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Rotational Brownian motion and nonlinear dielectric relaxation of asymmetric top
molecules in strong electric fields

] Y. P. Kalmykov
Centre d’Budes Fondamentales, Universile Perpignan, 52 avenue de Villeneuve, 66860 Perpignan Cedex, France
(Received 2 August 2001; published 28 December 2001

A general theoretical treatment of the nonlinear dielectric response of an assembly of asymmetric top
molecules in strong electric fields is presented in the context of the noninertial rotational diffusion model. The
calculation proceeds by obtaining an infinite hierarchy of recurrence equations for the expectation values of
Wigner’'s D functions describing nonlinear relaxation of the system. This hierarchy may be used for the
evaluation of both transient and ac nonlinear responses in strong electric fields. The solution of this hierarchy
is obtained for the particular case of rigid rodlike molecules in superimposed ac and strong dc bias electric
fields, allowing one to evaluate the corresponding nonlinear response. The results are in agreement with
available experimental data on nonlinear dielectric relaxation of dilute solutions of polar rodlike molecules in
nonpolar solvents.
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[. INTRODUCTION tion for the rotational Brownian motion of a molecule or
with the corresponding Smoluchowski equation for the prob-
Dielectric relaxation spectroscopy is a valuable tool inability distribution functionW of orientations of the mol-
probing dynamical processes in condensed matter. Recentfgcules in configuration space. The Smoluchowski equation
this method has been extended to the nonlinear regime arf@n be solved by expanding in terms of an appropriate
applied to the investigation of liquid crystals, polymers, sol-complete set of orthogonal functions, usually as a series of
ids, and liquids (see, e.g.,[1-10 and references cited spherical harmo.nict{hm. This yields an infinite hierarchy of'
therein. These investigations have shown that nonlinear difécurrence relatlons_ for the moments, namely the expectation
electric spectra provide more information on the relaxation/alues of the spherical harmonic¥; () (see, e.g.[16—
processes than can be obtained from linear spectra only. Gnt)- The underlying Langevin equation can also be reduced
the other hand, nonlinear experimental data offer an addi® (e Same moment systemithout recourseo the Smolu-

tional important test of theoretical models leading to a bettthOWSkI equationby appropriate transformation of the vari-

understanding of the properties of the materials. Howeverables and by direct averaging of the stochastic equation so

Obtained[16,17,2Q. In many practical application®.g., for

the study of nonlinear dielectric spectra requires an adequagﬁe problem in questionapproximate solutions of this hier-

:::goﬁr:ltéc;al description of dielectric relaxation in strong elec'archy can be obtained by using perturbation methods as the

] ) i i i energy of molecules in external fields is usudliyuch less
Here, a theory of nonlinear dielectric relaxation of dielec-inan ‘the thermal enerdyT. Moreover, when the perturbation
tric fluids in high electric fields is proposed in order to de- gpnroach is not applicable, one may use the matrix continued
scribe the nonlinear dielectric responses in dilute solutions ofraction method[16,17. As shown in Refs[16] and[20],
polar molecules in nonpolar solvents. The theory of electrighis method is very convenient for the computation of the
polarization of dielectric fluids was formulated originally by nonlinear response. In general, the same approach may be
Debye[11], who calculated the linear dielectric response inused for asymmetric tops by noting that the quantities of
the context of the noninertial rotational diffusion model of interest are averages involving WigneDsfunctions[22,23.
spherical molecules. That response has a well-known repre- The theory of rotational Brownian motion of asymmetric
sentation in terms of the Debye equation for the complexops in an electric fieldin the low field strengthlimit) has
dielectric permittivity and of the Cole-Cole diagram, which been developed by Wegenet al. [24-2§ in a particular

is a perfect semicircle. Linear-response theory was furtheapplication to the Kerr effect relaxatidithe results of We-
extended by Perrifil2] and other$13,14] to asymmetric top gener et al. [26] were reproduced recently by Hosokawa
molecules when the dielectric response becomes more comat al. [27]). Here, a theory of nonlinear dielectric relaxation
plicated, as rotation about each molecular axis may contribef asymmetric top moleculeis strong electric fieldds de-

ute to the dielectric spectra. The permittivity in linear re- veloped. As a particular example, the theory is used to evalu-
sponse is independent of the applied electric-field strengthate the nonlinear dielectric relaxation in superimposed ac and
Many attempts have been made to generalize the Debystrong dc bias electric fields for a system of rodlike mol-
theory in order to take into account the nonlinear aspects ofcules, where the dipole moment vector may be directed at
dielectric relaxation of polar fluids in high electric fields, an arbitrary angle to the long molecular axis. In an experi-
however only symmetric top molecules have been usuallynental context, this technique has been recently proposed by
treated(see[15] and[16] and references cited therein for a Hellemanset al. [7—10] to study the dynamics of molecular
review). The traditional theoretical approach to the problemliquids. It has been also demonstrated 7?-9] that the ex-
habitually commences with the noninertial Langevin equaperimental data for symmetric top molecules with the dipole
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axis, respectively, see Fig).IThe dynamics of the molecule
are described by the Euler-Langevin equation for the angular
velocity e(t) written in the body-fixed coordinate system
xyz[14,17, viz.,

%1 o)+ () XTo(t)+sot)=—VV[Q(1),t]+A1),
(1)

wherel is the tensor of inertia of the molecukee(t) is the
damping torque due to Brownian moveme#itis the rota-
tional friction tensor\(t) is the white noise driving torque,
again due to Brownian movemefit7], so thatA(t) has the
following properties:

Ai(H)=0,

______ Ni(t1)Nj(t2) =2kTs;; 65 6(ty — t2).

FIG. 1. Geometry of the problem. In the inset, a rodlike mol-
ecule is shown. Here, the overbar means a statistical average over an en-

semble of Brownian particles whicéil start at timet with

momentu directed along the axis of symmetry are in com-the sameangular velocity and orientatiofl7]; &;; is Kro-
plete agreement with the theory of Coffey and Paranjap@ecker’s delta, indicesj=1, 2, 3 correspond to the Carte-
[28]. However, for asymmetric top molecules where severakian axes,y,zof the molecular coordinate system, afit)
dispersion bands were obsenfdd] in the nonlinear spectra, is the Dirac delta function. The term VV in Eq. (1) repre-
no appropriate theory for the interpretation of the experimensents the torque acting on the molecule in the electric field,
data exists. The main objective of the present paper is to
develop such a theory. V(Q,t)=—(m-E)—(E-a-E)/2 (2)

The paper is arranged as follows. In Sec. Il, an infinite
hierarchy of recurrence equations for the expectation valueis the potential energy of the molecule in the fi&lt), u is
of Wigner’s D functions describing nonlinear relaxation of the electric dipole moment vectas, is the electric polariz-
an assembly of noninteracting rigid asymmetric top mol-ability tensor[here the effects due to hyperpolarizability are
ecules is derived in the context of the Langevin equatiomeglected, however they may also be included in the theory
approach to the noninertial rotational Brownian motion with-by adding the corresponding terms in Eg) [16]], andV
out recourse to the Fokker-Planck equation. The perturbatiors 6/ ¢ is the orientation space gradient operatép is an
solution of this hierarchy is obtained in Sec. Il for the par- infinitesimal rotation vector; the properties & are de-
ticular case of nonpolarizable rodlike molecules in superim-scribed in detail if29]). The torque—VV in Eqg. (1) can be
posed external ac and strong dc bias electric fields. The resxpressed in terms of the angular momentum opedaitb8]:
sults are presented and discussed in Sec. IV. In Appendix A,
for the purpose of illustration, the linear-response theory for —VV=—idv, 3
asymmetric top molecules is given in the context of the de-
ve_lopec’i approa_ch. The _sy_stem Of moment Qquatlons cU\/here the components dfin the molecular coordinate Sys-
Wigner’sD functions describing nonlinear relaxation of non- tem are[23]
polar polarizable asymmetric top molecules is presented in

Appendix B. 1 i
J=—@Q71=3%h, 3 =——37 43,
II. ANISOTROPIC ROTATIONAL DIFFUSION IN A V2 V2
STRONG ELECTRIC FIELD: THE LANGEVIN
EQUATION APPROACH ~ o d
© d=mig @

Let us consider the three-dimensional rotational Brownian
motion of an asymmetric top molecule in an external field d
E(t). The orientation of the molecule is described by the
Euler anglesQ)={«,B,v} (here the notations from Refs. .

[22] and[23] are adopted The Euler angles completely de- jtlz'_eii«/ icotlgi_H i;i 7 ) (5)
termine the orientation of the moleculdrody-fixed coordi- V2 dy dB sinBia

nate systenxyz with respect to the laboratory coordinate

systemXYZ(«, B, andy are the azimuthal and polar angles The Euler-Langevin Eq.) is a vector stochastic differential
and the angle, describing rotation of a molecule around:the equation. Here, we shall use the Stratonovich definit&]
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of a stochastic differential equation, as that definition alwaydn calculations, it is convenient to use the molecular coordi-
constitutes the mathematical idealization of the dielectric renate system in which the diffusion tensér is diagonal so
laxation processeEl7]. The Stratonovich definition allows that the operatoW 2 is simplified to[13]
us to apply the methods of ordinary analykl¥,3Q at the
transformation and solution of EqL). 2 _ 32 32 32

In the noninertial limit(or in the Debye approximation Vo=~ (Ducit DyyJy +D222). (1)
when the inertia terms in Eq1l) may be neglected, the an-

gular velocitye(t) may be immediately obtained from Eqgs. NOW: one can note that the opera®f, defined by Eq(11)

(1) and(3) as can be represented gk3]
w(t) =3O —i1IVQ(1), 1)} (6) Vi =~ H(Dyxt Dyy)3+[2D,,~ (Dt Dy,) 132
(the validity of this approximation is discussed in Sec).IV +(Dyy— Dyy)(ji_ji)}- (12
On using Eqgs(3) and (6), one can obtain the equation of
motion of an arbitrary functiori(a,8,7): Further, on using the known properties of the angular mo-
d mentum operators and functions, viz.[23],
—f= f+,8 f+ y—f
dt &B ji_jiz(jJrl)Z_i_(j*l)Z’
=(w-V)f
:I[(;fl)\)jf]_i_[(;fljv)jf] (7) szJrl,m(Q):J(J+1)DJr1,m(Q)n
Equation(7) is a Stratonovich stochastic dif:ferential equation ngL,m(Q) = sz'ﬁ,m(Q),
with a multiplicative noise termi[(3~1\)-Jf]. First, one
can note that for a symmetric tensdr® and for anyV and . — D
‘ g 3Dl ()= =i+ DC 3D e (Q) (v=%1)

f the following mathematical identity holds:

[(DIV)-IF]=3[VVAi+fVEV-V2(Vf)], (8 (le I,.j,.1, @re the Clebsch-Gordan coefficieri@3]), one

. . may show that
where the operatoV g, is defined ag13]

2D} (Q)=—1(Dyyt Dyy>{[2Am2+j<'+1>]D"n ()

V3=-3.D-J=— > DymwJ e
0 kiiy.z T +i(i+DE[C] m*ﬁci m11,1Dhme2(0)
andD=kT& ! is the diffusion tensor. Noting Ed8), aver- +Cl M iClm 1 1Dl o ()]}, (13
aging of Eq.(7) over an ensemble of particles yields
where
i<f>:<V2f>—i(VZ(Vf)—vvzf—fvzw 9) Ml jm2
dt Q 2kT @ @ Qv C}:mﬁ,xlcﬁjmh,lﬂ

where the angular brackets denote ensemble averages. B
The first term on the right-hand side of E¢P) is the 2j(j+1)
noise-induced drift, which is due to the averaging of

i[(3\)-Jf]. The procedures of the transformation for vari- and two dimensionless parametérsnd = have been intro-
ables and averaging of the Langevin equations have beafuced, viz.,
described in detail in16,17,31.
In dielectric relaxation, the quantities of interest are aver- D,, 1 _ Du—Dyy
ages involving Wigner'd® functions defined af22,23 A= DiD. 2 " D.5D.
XX XX

J — a-iMagd —iM’y
Dy () =e dun-(B)e ' (for the isotropic rotational diffusion, both andZ are equal

to zerg. Thus for any potential/, which may be expanded

where d’, ., is a real function whose various explicit
mu’ (B) P in D functions as

forms are given, for example, in RgR3]. For Wigner'sD
functions, Eq.(9) yields

g | VIQDIKD= 2 7rso(DS(). (14
&<Da,m>=<VéD’n,m>—2kT<V (VD))
25 Eqg. (10) can be rearranged to yield the system of moment
—VV; D) =D} VAV). (100 equations, viz.,
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j+1)
+

d .
TD&<D¢,,m><t>:—[ Am2]<oln,m><t>—

1
+C]m1 1C]m 11~ 1<D§1m—2>(t)]+z

j(+1

PHYSICAL REVIEW E 65 021101

= ~jm+1~j,m+2
E[Ci m11CJ m+111<Dn m+2) (1)

j+R

> X

VRsoCTmRe[I(I+1) +4AmQ—j(j+1)

RSQ J=[j-R|

—R(R+1)IC)MEAUD g my o) (D +E[II+1)CImI 81 ICI M 81, Chme%

m+1~jm+2 J,m+2+
—jd +1)C} mllci m+1,1,1Cj, m+2RQQ

- Im+Q-1 ~JIm+Q-2
+:[J(J+1)CJ,$+817103%8711 1

]]rI:nnEQQ %KD;, n+sm+o-2 (D}

~R(R+1)CRE 1 1CRE 51

where
Tp= (Dt Dyy) -t

and the known relatioh23]

i1t
INERA
]1,|1,j2,|2 ilymlyjz,mz

i1 2 _ j.my+my j
lyomy =l ,m, . [1+1,,m,+m
1 212 J:“l_JZ‘ 172" 2

has been used. Equatidh5) is a general result, which may

R(R+1)CR311CR3111.C
CJ m+Q

J 2
i, m-I;QQ++2]<D +S, m+Q+2>(t)

JmRQ_J(J+l)CJm1 1CJm 11~ 1C]m 225%

(15

6N-dimensional vectoRN and 6; is the angle of rotation
about thei axis. Unfortunately, it is very difficult here to
evaluate ¢;);=s;;/l; for a model system, however they can
be measured experimentally using nuclear-magnetic-
resonance techniqué33,34.

On supposing that the electric fididis directed along the
Z axis of the laboratory coordinate system, the polarization
P,(t) is defined as

: . P2(t) =No(u2)(1), (18)
be applied to evaluate all types of the nonlinear responses
(transient, ac stationary, and nonstationar/polar and po- whereN, is the concentration of dipolar molecules and the
larizable asymmetric top molecules as it does not use thg is given by[24]
assumption of the low field strengths. Another advantage of
the present approach is that it is not based on the quantum
theory of a free asymmetric rot¢as that of Favrg13] and
others [24-26,32,33 so that many results obtained in
[13,24-26,32,3Bin the context of the anisotropic rotational
diffusion model may be rederived from E(L5) in a much
simpler way than beforésee Appendix A, where the linear
dielectric response for asymmetric top molecules is evalu- uFb=x—
ated. V2

Equation (15 contains three phenomenological

constants—the three diagonal components of the diffusio@’e the irreducible spherical tensor components of the first
tensor, Viz.,D,,, Dyy, andD,,. The values oD;; may be rank[23], andu,, uy, andu, are the components of a unit
estimated either in the context of the so-called hydrodynami¥ector u in the direction ofu. Due to the cylindrical sym-
approact 12,32, when the components of the diffusion ten- metry about theZ axis, the momentg$D}, ,)(t) with n=0
sor depend only on the shape of the partisiee Sec. I}, or  only are required in the calculation @fz(t) (as well as the
in terms of microscopic molecular parametg38]: electro-optical birefringengé25,26. Hence, one can always
insert in Eqs(14) and(15) the indicen,S=0 so that from a
mathematical viewpoint, Eq(15 becomes a recurrence
equation, where only two indices vary. Moreover, the form
wherel; is the principal moment of inertia about thexis  of Eq. (15) for the longitudinal nonlinear response fagsym-
and (r;); is the angular velocity correlation time about that metric topsbecomes very similar to that which appears in
axis. The components of the rotational friction tenspmay  evaluating the nonlinear response sfmmetric topsvhen
be related to the intermolecular potential function of thethe external field has an arbitrary directidr®,20]. A general
asymmetric rotof33] method of solution of such recurrence equations in terms of

1
pr(@=p 2 (~DPUPDGQ). (19

Here

0)

(uyxiuy), u@=u,

D“:kT/Sii:(TJ)ikT“i, (16)

7

21 matrix continued fractions has been recently developed in
Si =" < 02V(RN)>

where V(RVY) is the potential energy ofN molecules

Refs.[35—37 and applied to the evaluation of the nonlinear
dielectric response if16,20. Thus, the problem of the
evaluation of the nonlinear response of asymmetric top mol-
ecules may be solved just as[ib6,20 using matrix contin-

whose positions and orientations are specified by theied fractions. Indeed, on using the resultg36—37, one
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can show that Eq(15 may be transformed into a matrix vV 1

three-term differential-recurrence equation — = E 121 OQDéQ, (22
kT Q=-1 o !

d
TDa Cn()= Q;Cnfl(t) +QnCh(1) +QnCpya(t)

where

n=123...), 20 i
( 3o 20 v100= —COSO[&(t) + &),  vi0+1=ESINO[E(L)+ &)/V2
where the elements of the column vec@g(t) and of the
matricesQ,, Q. , and Q, are determined by Eq15.  and
Equation(20) can be solved in terms of matrix continued
fractions for all kinds of nonlinear responggansient, ac
stationary, nonstationary16,17,20Q. E)=uEM/KT) and &y=puEq/(KT).
The recurrence Eq(l5) for the expectation values of
Wigner’s D functions can also be obtained from the corre- 1 -
sponding Smoluchowski equation for the distribution func-NoW. 7o=(2D.) %, A=[(D;/D,)-1]/2, and ==0 so
tion W(Q,t) of the orientations of asymmetric top mol- that Ed.(15) is considerably simplified to yield
ecules, which i$13]

d
J s A —(D! =—[Am?+j(j+ ]
at kT
1 ¢ j+1
As shown in Ref[31], both approaches are equivalent and — > > v1,00CT 1 1.6C e
yield the same results. However, the Langevin equation ap- 4Q=-1 J=i-1

proach has, in our opinion, the advantage that it allows one o

to derive Eq.(15) in a much simpler manner. X[G+D+2=J(J3+1)=4AmQ]
For the purpose of illustration, we calculate here the non- ><<Df, me)(D)

linear response for rigid rodlike molecules in superimposed ’

external ac and strong dc bias electric fields. As far as spheri-

cal and symmetric top molecules with the dipole moment which for n=0 may be written as

directed along the axis of symmetry are concerned, this prob-

lem has already been treated in many papers, see, e.g.,

[15,16,19,28 However, as mentioned in the Introduction, o 04

these results are not applicable to asymmetric top molecules 7-Ddt< om (1)

[10].

iG+1)
2

+mzA}<D%,m>(t)

t)+ © .
= S0l i+ )DL

1. NONLINEAR RESPONSE IN SUPERIMPOSED ac 2(2j+1)
AND STRONG dc BIAS FIELDS: [£(t)+ &]sin®
PERTURBATION SOLUTION —jV(j+1)2- 2<D'“>(t)]+

4(2j+1)
In what follows, let us suppose, for simplicity, that the
diffusion tensorD has only two distinct componen®,,

X[(j+2Am)(j+m+1)(j+m+2)(DLEL (D)

=D,,=D, andD,,=D;. This approximation is reasonable —(j—2Am)V(j—m+1)(j—m+2)(Dh 1 )(1)
for rodlike molecules, wher®,,~D,, andD, andD, are

the rotational diffusion coefficients about the long and short +(j+1-2Am)\V(j—m—=1)(j— (DJ m+l)(t)
axes of the molecule, accordingly. Furthermore, let us sup-

pose that the molecules are subjected to superimposed exter- —(j+1+2Am)(j+m—1)(j+m)(Dh ) ()],
nal electric acE;(t) and strong dc biag&, fields (both di- (23)

rected along the axis) and consider an ensemble of rigid

nonpolarizablepolar molecules, where the dipole vecpois

oriented at an angl® to the direction of the long axis of the Insofar as values of the field parametégsand ¢ are very
molecule(see Fig. 1 Here, the polarizability effects are ig- small (<1) for the majority of polar molecules even at the
nored (equations, which take into account these effects, ardield strengths~ 10’ V/m, one may apply perturbation theory
given in Appendix B. Without loss of generality, for a rod- in order to calculate the nonlinear response. Here, we shall
like molecule, the molecular coordinate system can alwaysestrict ourselves to the ac response nonlinear in the dc bias
be chosenso that,=0, from whichu,=sin®,u,=cos® in  field &, (up to third ordey and linear in the ac field;e'"

Eqg. (19). The potential energy of the molecule is then given(higher-order terms may be calculated in a similar manner
by [15]). Now, one can obtain from Eq23) equations for
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(Dg and(Dg__;)—(Dg,), which are necessary to evaluate (D

the nonlinear response from Ed.9), viz.,

oo (D90 + (Db 1

—[f(t)+§o][ [1-(Dga (V)]

—ﬂ[mz YO—(DiHDOIf, (29
2\/6 0—-1 0, ’

d 1
TDaKDO,—l)(t) — (Do (V)]

+(1+A)[(Dg_1)(H) —(Dg)(1)]

v2(1+A)sin® N

(1-2A)sin®
=[&(t) + &] 3

3v2

5 cos® 5 5
X (Do (t)— %[(Do,ﬂ)(t) —(Dg (D]

(1+2A)sm®

o [(D§-2) (D) +(Dg X (D] (25

and one can seek a solution in the form

0s®

<Doo>(t [So(&o) + 16" Xo(&p,0")],  (26)
(Dg >(t)_<Dlﬁ(t)*ﬂ[25 (&0)+ €161 (&p, 0")]
0-1 0, 3y, (250(&) 6 1(éo0 \
(27)

where sy(&)=&(1— §§/15) and o’ = w1,
one can evaluate(DOO>(t) (D _o®)— (D01>(t) and
(DO 2>(t)+(D02)(t) from Eq. (23) in the linear(in &;) ap-

Further,

PHYSICAL REVIEW E 65 021101

32D +(D3ALND)

N §Osin2®|
5\6

e'“(3+4A)
f:ls+4(A+| L+ (g0

(28)

(D§,- () —(DF1())(1)

_£osin20 £,€(3+A)
506 |0 (3+A+tie)
wl1+ (6+4A)Xo(&p,0")+3X1(&g,0")
4(3+A) ’
(29
(DED)(1)
~ &(1+3cos M) 3¢,e'
N 60 | (3+iw')
4X0(§0,w')COSZ®—Xl(fo,w')sinz@
X[1+ (1+3cosd) H
(30

Having determinedc, andx; from Egs.(24)—(30), one can
calculate the electric polarization from E@.8) and, hence,
the complex nonlinear dielectric permittivity,onjin( @, &),
viz.,

8non|in(wvfo)_8oo°<00§ ®XO(§Oaw,)+Sin2 Ox1(&p,0")/12

and the nonlinear dielectric incremeéi¢ = 8’ +ids”, i.e.,
the differences onin( @, &) — €jin(@) between the nonlinear,
Enoniin(@,&0), and linear, gjjn(®) = €noniin(@,0), dielectric
permittivities. The incremende can be written as

Se=A(gg,8.)F (0, &), (31

prOX|mat|on VIZ where
L & (codo [2 201+ A)+iw' Sirf O ( 2(1+A)(83+A)+(6+5A)iw’
Flo.80)= = 30115707 |3~ (3+iw)(1+A+iw') 3+A+ie’ 2(1+i0 ) (1+A+ie)
co§®( 3(1+A)+(3+A)iw’) NG (1-2A)(6+iw’)
3+iw (1+iw)(1+A+in))| 2(1+A+ie’) 3(3+iw’)
2 3(1+A) 2(2A—1) (1-2A)(6+iw’) 3+2A
TS Ol B A o) (15 ATi0) | (1-ie)(B+ie)  (3+ie) (1+ie)3+A+ia)

2(6+2A+iw') (1+A)(1-2A) (1+A)(1+2A)(3+4A)

)+Sin2

T GrAtie)

(1+2A)(6+8A+iw')>
(3+4A+iw')

|

(1+A+iw)(3+ia’)

(1+A+iw)(3+4A+iw)

(32
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imaginary parts ofF(wmp,&g) as functions of logyw7p)
and of A are shown. Apparently, the spectrafo o , &)
strongly depend on bot® andA because in the anisotropic
diffusion (A+#0) the rotation about the long molecular axis
contributes to the spectra é&x+0°. Here, five modes with
characteristic timesy, /3, o /(1+A), 5 /(3+A), and
75 /(3+4A) take part in the nonlinear dielectric relaxation
procesgthe modes characterized by the relaxation timges
/3, and o /(1+A), 75/(3+A), and 5 /(3+4A) are
due to molecular rotation about the short and long molecular
axes, respectively

In order to test the theory, experimental
and theoretical dielectric incrementss of dilute solu-

oo tions of mesogenic 10-TPEB molecules
=1 ( (CyHo—F—F—CH,— CHy—F—N=C=S, whered
=CgH,) in benzene were compared. The spectrdoivere

FIG. 2. R¢F] as a function of log,(w) and® for A=5 and ~ Measured in superimposed strong dc &0’ V/im) and
&H=1. small (=100 V/m) ac electric fields in Ref[10]. For the
10-TPEB molecule, the angl@ is markedly different from
and the functionA(e,,e.,) takes into account the internal zero, viz.,0=42°+2° [10]. In the fitting, the experimental
field effects; this function depends on the model of the locavalue of the relaxation timep=8.57x10"1°s[10] has been
field used(appropriate equations foh(eg,e.,) are given, used so that the only adjustable parameter Wa$he least
e.g., in Ref.[10]; the internal field problem for nonlinear mean-squares fitting procedure yielils- 3.85. The compari-
dielectrics is discussed, e.g., in Ref38] and[39]). For ©® son of the real and imaginary parts of the experimental and
=0 (symmetric top or A=0 (isotropic diffusion, Eq. (32)  theoreticalde and of the nonlinear Cole-Cole plot for a dilute
reduces to the corresponding result of Coffey and Paranjapgolution of 10-TPEB molecules in benzene at 15 °C is shown
[28]: in Figs. 6 and 7, respectively. It appears that the theory cor-
rectly describes the shape of the observed spectra; here, five
) , 1+ (1+ie")(2+i0'/3) modes with different characteristic frequenciésie to mo-
Flo ’gO)_’_5045(1+iw’)2(1+iw’/3) ) (33 lecular rotation about the long and short molecular axes
contribute to the spectra. Moreover, the calculation demon-
The principal difference between Eq82) and (33) is that  strates that the theory also explains the temperature depen-
Eqg. (32) takes into account the contribution of the rotation dence of the nonlinear dielectric decreméht it describes

logyglwTp]

about the long molecular axis . the nonlinear spectra measured at 6 and 25 °C in €.
for the same value oA.
IV. RESULTS AND DISCUSSION It is of interest to compare the value &fso obtained with

] ] that estimated in the hydrodynamic linit2,32. For long
The real and imaginary parts 8w ,£o) [Eq. (32)]as  ods(L>R, whereL andR are the half-length and radius of
functions of logo(wp) and of the anglé® are illustrated by 4 rog), the hydrodynamic theory yields
surface plots in Figs. 2 and 3. In Figs. 4 and 5, the real and

Q \

0.00
0
, Re[F]
-0.02
Im[F]
~0.04’ gl
0
logolwrp] 1
“n/2
FIG. 3. In{F] as a function of log( w7p) and® for A=5 and FIG. 4. R¢F] as a function of log(w7p) and A for ® = w/4
g(): 1. and g(): 1.
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¢
by 15°C
/\//\/\//\/\/\/\\/\/\\/\\/ 5 :
wmww\\wa o
@MW\W \V\iny\\ \y\\\w . . .‘.
0.00 > & o |*
0 % 10 M A
—~0.01 X e ° ° ° .' (]
> X £ | ° * e e
Im[F] _ . ¢ K. )
-0.03 A -15 . ®
\.n_t_
-40 ' -30 ' -20 ' -10 ' 0
logsolwrp] A 107 se’
FIG. 5. In{F] as a function of log(wrp) and A for © = /4 FIG. 7. Nonlinear Cole-Cole plot for a dilute solution of 10-
and&,=1. TPEB molecules in benzene at 15 °C. Solid circles are the experi-

mental data from Ref.10]; solid line is Eq.(32).

_ X_Z_ E (34) condition can be written in the ford/ (1,0, )<<1. The above
4In(2x) 2° inequalities break down in liquids and solutions only for the
lightest polar molecules such as HF and HCI, where quantum
Herex=L/R and equations fobD, andD, from Ref.[40] effects were indeed observgdl]. The assumptiorii) re-
have been used in order to obtain E§4). The valueA flects the fact that interparticl&dipole-dipole correlations
~3.85 corresponds to a shape paramgte6.7 in Eq.(34) are neglected in the Langevin Ed), which is only valid in
and reasonably characterizes the geometrical structure of thee zero order of the small paramejefN,/kT<1. The last
10-TPEB moleculd10]. inequality is satisfied at room temperatures and for dipole

In evaluating the nonlinear response in the context of thenoments~1 D up to a concentration of #cm~3. One may
noninertial rotational diffusion model, we have ignor@l  expect, however, that the qualitative behavior of the nonlin-
quantum effects(ii) dipole-dipole interactions, an@ii) the  ear response will be similar at higher concentrations of di-
inertia of the molecules. The conditidi) means that the poles. The noninertial approximati¢assumptioriii)], i.e.,
results of our calculations for weak fields are applicable ta;w/s;;<1, is fulfilled in the low-frequency region under
the system, wherey;i/1;<1 [# is the Planck constant and consideration(<10 GH2 for the majority of molecules in
7.=(1;/2kT)¥? is a characteristic time of the thermal mo- liquid solutions. The inclusion of the inertial effects causes
lecular rotation. In a strong fielde, where the characteristic the theory to be much more complicated as one then needs to
frequency of the system is, = (1E/1;)*2 the quasiclassical solve the inertial Euler-Langevin equatiorfl) (the
differential-recurrence equations will involve six indices in
that casg However, in the low field strength limit, the ap-
propriate linear dielectric relaxation theory for asymmetric
top molecules has already been develofsst, e.g.[14,42—

47]) so that the task of developing the corresponding
nonlinear-response theory remains.

To conclude, in the present paper, the moment system
[Eq. (15)] governing the kinetics of the polarization of an
1./7:3 15 °C assembly of asymmetric top molecules in high electric fields

151 has been derived. Equatidid5) is a general result which
-30 " may be used to evaluate various types of nonlinear responses
{ o oo % (such as transient, ac stationary responses, fetcarbitrary

]"‘—e—m oo polar and polarizable asymmetric top molecules in strong

s T T : 3 external fields. The advantage of the approach we have de-
log. [ f (MHz)] veloped is that it QOes not use the assu_mption of low field
10 strengths. On solving this system for rodlike polar nonpolar-

FIG. 6. Nonlinear dielectric spectrase(f) (f=w/27)  izable molecules, when the dipole vector of the molequle
of a dilute solution of 10-TPEB  molecules IS directed at an arbitrary angé to the long molecular axis,
(CyHy—D—F—CH,—CH,—J—N=C=S, where ¢  an analytical equation for the nonlinear response in superim-
=CgHo) in benzene at 15 °C. Solid and open circles are the experiposed ac and strong dc bias fields has been de(ivbith is
mental data from Ref10]; solid lines are the best fit from E¢82) ~ of importance from an experimental point of vigw-10]).
at A=3.85(0=42°[10]); dashed lines are Coffey-Paranjape, Eq. For symmetric top molecules, whemis directed along the
(33. axis of symmetry of the molecule, the result for the nonlinear

0~u~=m.,,.._

~

1,1- &'
2,2 - &"

-20

10°8¢", 10°6¢"
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dielectric incremenfEq. (32)] reduces to that of Coffey and (D§-1)() =(Dg Y1) =[(D5_1)(0)—(Dg )(0)]
Paranjapg28]. It was shown that the results obtained are in ' ’ ’ ’
agreement with experimental data. Our approach can also be X e (PzztDyylt, (A4)
used for the evaluation of the dynamic Kerr effect, where the 1 N 1 N

quantities of interest arD3 )(t) [15,24—26. Moreover, it (Do~ () +(Dg (1) =[(D5-1)(0)+(D5 »(0)]

can be appliedwith small modificationsto the calculation x @~ (Dzz+ Dyt (A5)

of the nonlinear magnetiadesponse of liquid magnetic sys-
tems such as magnetotactic bacteria in aqueous solutions apthere the relations

ferrofluids (colloidal suspensions of fine magnetic parti¢les . . _

where the dynamics are governed by equations very similar 7o =DxxtDyy, 75 (1+A—=E/2)=D,,+D,y,

to Eq.(1) [17,48-5Q. Thus the approach we have developed 1 -

provides a useful basis for future studies of the nonlinear 7 (1+A+E/2)=Dy,+ Dy (A6)
response of various physical systems of Brownian asymme
ric top particles. Further applications of it will be given
elsewhere.

Fave been taken into account. The initial val(@%’p>(0) in
Eqgs.(A3)—(A5) are determined from the following equation:

(Dgp)(0)= f D3 p(Q)W;(Q)dQ
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sending numerical values of the experimental daf. (Do )(0)=F&(ucxiuy)/(3v2)+0o(§). (A7)
Here, the known properties @ functions[23], viz.,
APPENDIX A: EVALUATION OF THE LINEAR ' y 82
RESPONSE FROM EQ. (15) j DL’m(Q)DL/’m/(Q)dQ: m 8i.i"On.n' Om.m »

Here, we demonstrate how the linear-response theory re-
sults for noninteracting asymmetric top molecules can DL*m(Q)=(—1)”’ij,n _(Q)
readily be obtained from Eql5). Let us suppose that an ' '
external spatially uniform small dc electric fielg (¢  (dQ2=singdBdady and the asterisk denotes the complex
= uE/kT<1) was applied to the system of asymmetric topconjugate, have been used. Now one has from H@$) and
molecules att=—co in the direction of theZ axis of the (A3)—(A7)
laboratory coordinate system and at tite0 the field has u2N
been switched off. We are interested in the decay of the P,(t)=E 0
polarizationP,(t) of the system of the molecules starting at 3kT
t=0 from the equilibrium state | with the Bolzmann distri- +u2e Dzt Dyy)ty
bution functionW,(Q)=C ! exd u-(Q)E/(kT)] [whereC is X
a normalizing constant and; is given by Eq.(19)] to the  which is the result of Perrinl2]. Having determined the
equilibrium state Il with the uniform distribution function Px(t), one can also evaluate other dielectric parameters such
W, () =1/872, which is reached at— . as the complex dielectric susceptibility and permittivity. We
The relaxation ofP,(t) given by Egs.(18) and (19) is  remark that the quantum theory of a rigid asymmetric rotor
completely determined by(Dgo(t), (Dg_;)(t), and (which was the basis of the previous theoretical approach
(Dg»(t). Equations of motion for these functions e¢0  [13,24—26) has not been used to derive E43).

can be obtained from Eq15) at j=1, n=0, and m=0,
+1.One has APPENDIX B: MOMENT SYSTEM FOR RODLIKE

POLARIZABLE MOLECULES

{ugef(DXﬁ Dyy)t 4 u)Zle—(DXXJr D, )t

: (A8)

d 1 In order to take into account polarizability effects, it is
7o (P00 () +(Doo () =0, (A1) sufficient to derive moment equations foonpolar polariz-
able molecules only as the contribution of the polarizability
d term in Eq.(2) is additive. The potential energy of a non-
/Rl 1 = 1 polar polarizable molecule in the external electric fi&d
TDdt<D°*il>(t)+(1+A)<Dovil>(t)_ (E/2)(Doz)(V). applied in the direction of th& axis of the laboratory coor-
(A2)  dinate system is given by24]

2
: \%
’ _ 2
The solutions of EqsAl) and (A2) are T = 2 , v200D30; (B1)

(D5 (1) =(Dg(0)e PxPyyt, (A3)  where
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E? E?(ayy— ayy T 2i ayy) (37 4mMA)
= — (—1)QuQ 0+2_ _ xx— Qyy Xy
V0= " g (" Ue (82 Eim 8KT(2j—1)(2] +3)

and X[2=(m=1)?][(j +1)*— (m=1)7],

a™ P = (318 Y @y~ ayy* 2iayy),

Ez(zazz_ Qxx— ayy)

+2,0_ —
a* V=% (3R ay,xiay,), a'®=(3a,,~Tra)l2 Cm = 8KT
are the irreducible spherical tensor components of the second 2j+1FDV[(j=1)2—m?[(j+1+1)°—m?]
rank, which consist of the components,, of the electrical X 2j=1(2j+2=1) '
polarizability tensoi&. Thus Eqs(15), (B1), and(B2) yield N -
the 25-term recurrence equation, viz.,
d . e?,ﬂ: + Ez( a’xz"_" [ a’yz)(j.i mA)
Toa@%,m)(t) b 2kT(2j+1)(2j+3)
o XV[(j+1)2—m?](j+2+xm)(j+3=m),
G+ A VIG+1)2=m?](j )(j )
- 2 +Am <Dn,m>(t)
L2 i e‘_zﬂ:+E2(axziiayz)(j+1:mA)
m - i i—
TG, sy veoeli(H D463+ ' 2kT(2j+1)(2] 1)
Q=-2 J=[j-2 : o i1+
o XA(iZ=m?)(j—2Fm)(j—1Fm),
—4mQAIC] T, iClma(Damig)(t).  (BI)
For n=0, Eq. (B3) can be presented as the 15-term recur- pap By ayyF 2iay)(j+1F2mA)
rence equation: Gm = 8kT(2j-1)(2j+1)
d z . XV[(j—1Fm)?=1][(j—2Fm)2—1],
g (Dbm (= 2 e Dhmig)(t), (B4
ql=-2
where 2o E2(ay— atyy 2i ayy)(j=2mMA)
Jm 8kT(2j+3)(2j+1)
j(+1) _ .
en=——5 —mA )AL +22m)?2=1][(j+3+m)?—1],
E2(2a,,— axx— ayy) [j(j+1)—3m?] 121 —1+1_ 1+2_ _—1+2_ _+10
e =6 roo=er =g ~=e " =0.
- aKT (21-1)(2)+3)" b
01 E2(ay,Fi ay,)(1=2m)(3+2Am) Equation(B4) is similar to that solved exactly in R420] in
Cm =+ 4kT(2j—1)(2j+3) terms of matrix continued fractions, therefore the approach
developed irf20] may also be applied with small modifica-
XV(j+1xm)(jFm), tions to the solution of Eq(B4).
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