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Rotational Brownian motion and nonlinear dielectric relaxation of asymmetric top
molecules in strong electric fields

Y. P. Kalmykov
Centre d’Études Fondamentales, Universite´ de Perpignan, 52 avenue de Villeneuve, 66860 Perpignan Cedex, France

~Received 2 August 2001; published 28 December 2001!

A general theoretical treatment of the nonlinear dielectric response of an assembly of asymmetric top
molecules in strong electric fields is presented in the context of the noninertial rotational diffusion model. The
calculation proceeds by obtaining an infinite hierarchy of recurrence equations for the expectation values of
Wigner’s D functions describing nonlinear relaxation of the system. This hierarchy may be used for the
evaluation of both transient and ac nonlinear responses in strong electric fields. The solution of this hierarchy
is obtained for the particular case of rigid rodlike molecules in superimposed ac and strong dc bias electric
fields, allowing one to evaluate the corresponding nonlinear response. The results are in agreement with
available experimental data on nonlinear dielectric relaxation of dilute solutions of polar rodlike molecules in
nonpolar solvents.
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I. INTRODUCTION

Dielectric relaxation spectroscopy is a valuable tool
probing dynamical processes in condensed matter. Rece
this method has been extended to the nonlinear regime
applied to the investigation of liquid crystals, polymers, s
ids, and liquids ~see, e.g.,@1–10# and references cited
therein!. These investigations have shown that nonlinear
electric spectra provide more information on the relaxat
processes than can be obtained from linear spectra only
the other hand, nonlinear experimental data offer an a
tional important test of theoretical models leading to a be
understanding of the properties of the materials. Howe
the study of nonlinear dielectric spectra requires an adeq
theoretical description of dielectric relaxation in strong ele
tric fields.

Here, a theory of nonlinear dielectric relaxation of diele
tric fluids in high electric fields is proposed in order to d
scribe the nonlinear dielectric responses in dilute solution
polar molecules in nonpolar solvents. The theory of elec
polarization of dielectric fluids was formulated originally b
Debye@11#, who calculated the linear dielectric response
the context of the noninertial rotational diffusion model
spherical molecules. That response has a well-known re
sentation in terms of the Debye equation for the comp
dielectric permittivity and of the Cole-Cole diagram, whic
is a perfect semicircle. Linear-response theory was furt
extended by Perrin@12# and others@13,14# to asymmetric top
molecules when the dielectric response becomes more c
plicated, as rotation about each molecular axis may cont
ute to the dielectric spectra. The permittivity in linear r
sponse is independent of the applied electric-field stren
Many attempts have been made to generalize the De
theory in order to take into account the nonlinear aspect
dielectric relaxation of polar fluids in high electric field
however only symmetric top molecules have been usu
treated~see@15# and @16# and references cited therein for
review!. The traditional theoretical approach to the proble
habitually commences with the noninertial Langevin eq
1063-651X/2001/65~2!/021101~11!/$20.00 65 0211
tly,
nd
-

i-
n

n
i-
r
r,
te
-

-

of
c

e-
x

er

m-
b-

h.
ye
of

ly

-

tion for the rotational Brownian motion of a molecule o
with the corresponding Smoluchowski equation for the pro
ability distribution functionW of orientations of the mol-
ecules in configuration space. The Smoluchowski equa
can be solved by expandingW in terms of an appropriate
complete set of orthogonal functions, usually as a series
spherical harmonicsYl ,m . This yields an infinite hierarchy o
recurrence relations for the moments, namely the expecta
values of the spherical harmonics^Yl ,m&(t) ~see, e.g.,@16–
21#!. The underlying Langevin equation can also be redu
to the same moment system~without recourseto the Smolu-
chowski equation! by appropriate transformation of the var
ables and by direct averaging of the stochastic equation
obtained@16,17,20#. In many practical applications~e.g., for
the problem in question!, approximate solutions of this hier
archy can be obtained by using perturbation methods as
energy of molecules in external fields is usually~much! less
than the thermal energykT. Moreover, when the perturbatio
approach is not applicable, one may use the matrix contin
fraction method@16,17#. As shown in Refs.@16# and @20#,
this method is very convenient for the computation of t
nonlinear response. In general, the same approach ma
used for asymmetric tops by noting that the quantities
interest are averages involving Wigner’sD functions@22,23#.

The theory of rotational Brownian motion of asymmetr
tops in an electric field~in the low field strengthlimit ! has
been developed by Wegeneret al. @24–26# in a particular
application to the Kerr effect relaxation~the results of We-
gener et al. @26# were reproduced recently by Hosokaw
et al. @27#!. Here, a theory of nonlinear dielectric relaxatio
of asymmetric top moleculesin strong electric fieldsis de-
veloped. As a particular example, the theory is used to ev
ate the nonlinear dielectric relaxation in superimposed ac
strong dc bias electric fields for a system of rodlike m
ecules, where the dipole moment vector may be directe
an arbitrary angle to the long molecular axis. In an expe
mental context, this technique has been recently propose
Hellemanset al. @7–10# to study the dynamics of molecula
liquids. It has been also demonstrated in@7–9# that the ex-
perimental data for symmetric top molecules with the dip
©2001 The American Physical Society01-1
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momentm directed along the axis of symmetry are in com
plete agreement with the theory of Coffey and Paranj
@28#. However, for asymmetric top molecules where seve
dispersion bands were observed@10# in the nonlinear spectra
no appropriate theory for the interpretation of the experim
data exists. The main objective of the present paper is
develop such a theory.

The paper is arranged as follows. In Sec. II, an infin
hierarchy of recurrence equations for the expectation va
of Wigner’s D functions describing nonlinear relaxation
an assembly of noninteracting rigid asymmetric top m
ecules is derived in the context of the Langevin equat
approach to the noninertial rotational Brownian motion wi
out recourse to the Fokker-Planck equation. The perturba
solution of this hierarchy is obtained in Sec. III for the pa
ticular case of nonpolarizable rodlike molecules in super
posed external ac and strong dc bias electric fields. The
sults are presented and discussed in Sec. IV. In Appendi
for the purpose of illustration, the linear-response theory
asymmetric top molecules is given in the context of the
veloped approach. The system of moment equations
Wigner’sD functions describing nonlinear relaxation of no
polar polarizable asymmetric top molecules is presente
Appendix B.

II. ANISOTROPIC ROTATIONAL DIFFUSION IN A
STRONG ELECTRIC FIELD: THE LANGEVIN

EQUATION APPROACH

Let us consider the three-dimensional rotational Brown
motion of an asymmetric top molecule in an external fie
E(t). The orientation of the molecule is described by t
Euler anglesV5$a,b,g% ~here the notations from Refs
@22# and@23# are adopted!. The Euler angles completely de
termine the orientation of the molecular~body-fixed! coordi-
nate systemxyz with respect to the laboratory coordina
systemXYZ ~a, b, andg are the azimuthal and polar angle
and the angle, describing rotation of a molecule around thz

FIG. 1. Geometry of the problem. In the inset, a rodlike m
ecule is shown.
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axis, respectively, see Fig. 1!. The dynamics of the molecule
are described by the Euler-Langevin equation for the ang
velocity v(t) written in the body-fixed coordinate syste
xyz @14,17#, viz.,

d

dt
Î v~ t !1v~ t !3 Î v~ t !1 §̂v~ t !52“V@V~ t !,t#1l~ t !,

~1!

whereÎ is the tensor of inertia of the molecule,§̂v(t) is the
damping torque due to Brownian movement,§̂ is the rota-
tional friction tensor,l(t) is the white noise driving torque
again due to Brownian movement@17#, so thatl(t) has the
following properties:

l i~ t !50,

l i~ t1!l j~ t2!52kT§ i j d i j d~ t12t2!.

Here, the overbar means a statistical average over an
semble of Brownian particles whichall start at timet with
the sameangular velocity and orientation@17#; d i j is Kro-
necker’s delta, indicesi , j 51, 2, 3 correspond to the Carte
sian axesx,y,zof the molecular coordinate system, andd(t)
is the Dirac delta function. The term2“V in Eq. ~1! repre-
sents the torque acting on the molecule in the electric fie

V~V,t !52~m•E!2~E•â•E!/2 ~2!

is the potential energy of the molecule in the fieldE(t), m is
the electric dipole moment vector,â is the electric polariz-
ability tensor@here the effects due to hyperpolarizability a
neglected, however they may also be included in the the
by adding the corresponding terms in Eq.~2! @16##, and“
[d/dw is the orientation space gradient operator~dw is an
infinitesimal rotation vector; the properties of“ are de-
scribed in detail in@29#!. The torque2“V in Eq. ~1! can be
expressed in terms of the angular momentum operatorĴ @13#:

2“V52 i ĴV, ~3!

where the components ofĴ in the molecular coordinate sys
tem are@23#

Ĵx5
1

&
~ Ĵ212 Ĵ11!, Ĵy52

i

&
~ Ĵ211 Ĵ11!,

Ĵz52 i
]

]g
, ~4!

and

Ĵ615
i

&
e7 igF6cotb

]

]g
1 i

]

]b
7

1

sinb

]

]aG . ~5!

The Euler-Langevin Eq.~1! is a vector stochastic differentia
equation. Here, we shall use the Stratonovich definition@30#
1-2
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ROTATIONAL BROWNIAN MOTION AND NONLINEA R . . . PHYSICAL REVIEW E 65 021101
of a stochastic differential equation, as that definition alwa
constitutes the mathematical idealization of the dielectric
laxation processes@17#. The Stratonovich definition allows
us to apply the methods of ordinary analysis@17,30# at the
transformation and solution of Eq.~1!.

In the noninertial limit~or in the Debye approximation!
when the inertia terms in Eq.~1! may be neglected, the an
gular velocityv(t) may be immediately obtained from Eq
~1! and ~3! as

v~ t !5 §̂21$l~ t !2 i ĴV„V~ t !,t…% ~6!

~the validity of this approximation is discussed in Sec. IV!.
On using Eqs.~3! and ~6!, one can obtain the equation o
motion of an arbitrary functionf (a,b,g):

d

dt
f 5ȧ

]

]a
f 1ḃ

]

]b
f 1ġ

]

]g
f

5~v•“ ! f

5 i @~ §̂21l!• Ĵf #1@~ §̂21ĴV!• Ĵf #. ~7!

Equation~7! is a Stratonovich stochastic differential equati
with a multiplicative noise termi @( §̂21l)• Ĵf #. First, one
can note that for a symmetric tensor§̂21 and for anyV and
f the following mathematical identity holds:

@~D̂ ĴV!• Ĵf #5 1
2 @V“V

2 f 1 f“V
2 V2“V

2 ~V f !#, ~8!

where the operator“V
2 is defined as@13#

“V
2 52 Ĵ•D̂• Ĵ52 (

k,m5x,y,z
DkmĴkĴm

and D̂5kT§̂21 is the diffusion tensor. Noting Eq.~8!, aver-
aging of Eq.~7! over an ensemble of particles yields

d

dt
^ f &5^“V

2 f &2
1

2kT
^“V

2 ~V f !2V“V
2 f 2 f“V

2 V&, ~9!

where the angular brackets denote ensemble avera
The first term on the right-hand side of Eq.~9! is the
noise-induced drift, which is due to the averaging
i @( §̂1l)• Ĵf #. The procedures of the transformation for va
ables and averaging of the Langevin equations have b
described in detail in@16,17,31#.

In dielectric relaxation, the quantities of interest are av
ages involving Wigner’sD functions defined as@22,23#

DM ,M8
J

~V!5e2 iM adMM8
J

~b!e2 iM 8g,

where dMM8
J (b) is a real function whose various explic

forms are given, for example, in Ref.@23#. For Wigner’sD
functions, Eq.~9! yields

d

dt
^Dn,m

j &5^“V
2 Dn,m

j &2
1

2kT
^“V

2 ~VDn,m
j !

2V“V
2 Dn,m

j 2Dn,m
j

“V
2 V&. ~10!
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In calculations, it is convenient to use the molecular coor
nate system in which the diffusion tensorD̂ is diagonal so
that the operator“V

2 is simplified to@13#

“V
2 52~DxxĴx

21DyyĴy
21DzzĴz

2!. ~11!

Now, one can note that the operator“V
2 defined by Eq.~11!

can be represented as@13#

“V
2 52 1

2 $~Dxx1Dyy!Ĵ
21@2Dzz2~Dxx1Dyy!# Ĵz

2

1~Dxx2Dyy!~ Ĵx
22 Ĵy

2!%. ~12!

Further, on using the known properties of the angular m
mentum operators andD functions, viz.@23#,

Ĵx
22 Ĵy

25~ Ĵ11!21~ Ĵ21!2,

Ĵ2Dn,m
j ~V!5 j ~ j 11!Dn,m

j ~V!,

Ĵz
2Dn,m

j ~V!5m2Dn,m
j ~V!,

ĴnDn,m
j ~V!52Aj ~ j 11!Cj ,m,1,n

j ,m1nDn,m1n
j ~V! ~n561!

~Cj 1 ,l 1 , j 2 ,l 2
j ,l are the Clebsch-Gordan coefficients@23#!, one

may show that

“V
2 Dn,m

j ~V!52 1
2 ~Dxx1Dyy!$@2Dm21 j ~ j 11!#Dn,m

j ~V!

1 j ~ j 11!J@Cj ,m,1,1
j ,m11Cj ,m11,1,1

j ,m12 Dn,m12
j ~V!

1Cj ,m,1,21
j ,m21 Cj ,m21,1,21

j ,m22 Dn,m22
j ~V!#%, ~13!

where

Cj ,m,1,61
j ,m61 Cj ,m61,1,61

j ,m62

5
1

2 j ~ j 11!
A@ j 22~m61!2#@~ j 11!22~m61!2#

and two dimensionless parametersD andJ have been intro-
duced, viz.,

D5
Dzz

Dxx1Dyy
2

1

2
, J5

Dxx2Dyy

Dxx1Dyy

~for the isotropic rotational diffusion, bothD andJ are equal
to zero!. Thus for any potentialV, which may be expanded
in D functions as

V~V,t !/~kT!5 (
Q,S,R

nR,S,Q~ t !DS,Q
R ~V!, ~14!

Eq. ~10! can be rearranged to yield the system of mom
equations, viz.,
1-3
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tD

d

dt
^Dn,m

j &~ t !52H j ~ j 11!

2
1Dm2J ^Dn,m

j &~ t !2
j ~ j 11!

2
J@Cj ,m,1,1

j ,m11Cj ,m11,1,1
j ,m12 ^Dn,m12

j &~ t !

1Cj ,m,1,21
j ,m21 Cj ,m21,1,21

j ,m22 ^Dn,m22
j &~ t !#1

1

4
(

R,S,Q
(

J5u j 2Ru

j 1R

nR,S,QCj ,n,R,S
J,n1S $@J~J11!14DmQ2 j ~ j 11!

2R~R11!#Cj ,m,R,Q
J,m1Q ^Dn1S,m1Q

j &~ t !1J@J~J11!CJ,m1Q,1,1
J,m1Q11CJ,m1Q11,1,1

J,m1Q12 CJ,m,R,Q
J,m1Q

2 j ~ j 11!Cj ,m,1,1
j ,m11Cj ,m11,1,1

j ,m12 Cj ,m12,R,Q
J,m121Q 2R~R11!CR,Q,1,1

R,Q11CR,Q11,1,1
R,Q12 Cj ,m,R,Q12

J,m1Q12 #^Dn1S,m1Q12
J &~ t !

1J@J~J11!CJ,m1Q,1,21
J,m1Q21 CJ,m1Q21,1,21

J,m1Q22 Cj ,m,R,Q
J,m1Q 2 j ~ j 11!Cj ,m,1,21

j ,m21 Cj ,m21,1,21
j ,m22 Cj ,m22,R,Q

J,m221Q

2R~R11!CR,Q,1,21
R,Q21 CR,Q21,1,21

R,Q22 Cj ,m,R,Q22
J,m1Q22 #^Dn1S,m1Q22

J &~ t !%, ~15!
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tD5~Dxx1Dyy!
21

and the known relation@23#

Dl 1 ,m1

j 1 Dl 2 ,m2

j 2 5 (
j 5u j 12 j 2u

j 11 j 2

Cj 1 ,l 1 , j 2 ,l 2

j ,l 11 l 2 Cj 1 ,m1 , j 2,m2

j ,m11m2 Dl 11 l 2 ,m11m2

j

has been used. Equation~15! is a general result, which ma
be applied to evaluate all types of the nonlinear respon
~transient, ac stationary, and nonstationary! of polar and po-
larizable asymmetric top molecules as it does not use
assumption of the low field strengths. Another advantage
the present approach is that it is not based on the quan
theory of a free asymmetric rotor~as that of Favro@13# and
others @24–26,32,33#! so that many results obtained
@13,24–26,32,33# in the context of the anisotropic rotation
diffusion model may be rederived from Eq.~15! in a much
simpler way than before~see Appendix A, where the linea
dielectric response for asymmetric top molecules is eva
ated!.

Equation ~15! contains three phenomenologic
constants—the three diagonal components of the diffus
tensor, viz.,Dxx , Dyy , andDzz. The values ofDii may be
estimated either in the context of the so-called hydrodyna
approach@12,32#, when the components of the diffusion te
sor depend only on the shape of the particle~see Sec. IV!, or
in terms of microscopic molecular parameters@33#:

Dii 5kT/§ i i 5~tJ! ikT/I i , ~16!

where I i is the principal moment of inertia about thei axis
and (tJ) i is the angular velocity correlation time about th
axis. The components of the rotational friction tensor§ i i may
be related to the intermolecular potential function of t
asymmetric rotor@33#

§ i i 5
2I i

p K ]2

]u i
2 V~RN!L , ~17!

where V(RN) is the potential energy ofN molecules
whose positions and orientations are specified by
02110
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6N-dimensional vectorRN and u i is the angle of rotation
about thei axis. Unfortunately, it is very difficult here to
evaluate (tJ) i5§ i i /I i for a model system, however they ca
be measured experimentally using nuclear-magne
resonance techniques@33,34#.

On supposing that the electric fieldE is directed along the
Z axis of the laboratory coordinate system, the polarizat
PZ(t) is defined as

PZ~ t !5N0^mZ&~ t !, ~18!

whereN0 is the concentration of dipolar molecules and t
mZ is given by@24#

mZ~V!5m (
p521

1

~21!pu~2p!D0,p
1 ~V!. ~19!

Here

u~61!57
1

&
~ux6 iuy!, u~0!5uz

are the irreducible spherical tensor components of the
rank @23#, andux , uy , anduz are the components of a un
vector u in the direction ofm. Due to the cylindrical sym-
metry about theZ axis, the momentŝDn,m

j &(t) with n50
only are required in the calculation ofPZ(t) ~as well as the
electro-optical birefringence! @25,26#. Hence, one can alway
insert in Eqs.~14! and~15! the indicesn,S[0 so that from a
mathematical viewpoint, Eq.~15! becomes a recurrenc
equation, where only two indices vary. Moreover, the fo
of Eq. ~15! for the longitudinal nonlinear response forasym-
metric topsbecomes very similar to that which appears
evaluating the nonlinear response ofsymmetric topswhen
the external field has an arbitrary direction@16,20#. A general
method of solution of such recurrence equations in terms
matrix continued fractions has been recently developed
Refs.@35–37# and applied to the evaluation of the nonline
dielectric response in@16,20#. Thus, the problem of the
evaluation of the nonlinear response of asymmetric top m
ecules may be solved just as in@16,20# using matrix contin-
ued fractions. Indeed, on using the results of@35–37#, one
1-4
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ROTATIONAL BROWNIAN MOTION AND NONLINEA R . . . PHYSICAL REVIEW E 65 021101
can show that Eq.~15! may be transformed into a matri
three-term differential-recurrence equation

tD

d

dt
Cn~ t !5Qn

2Cn21~ t !1QnCn~ t !1QnCn11~ t !

~n51,2,3, . . . !, ~20!

where the elements of the column vectorCn(t) and of the
matrices Qn , Qn

1 , and Qn
2 are determined by Eq.~15!.

Equation ~20! can be solved in terms of matrix continue
fractions for all kinds of nonlinear response~transient, ac
stationary, nonstationary! @16,17,20#.

The recurrence Eq.~15! for the expectation values o
Wigner’s D functions can also be obtained from the cor
sponding Smoluchowski equation for the distribution fun
tion W(V,t) of the orientations of asymmetric top mo
ecules, which is@13#

]

]t
W52 Ĵ•D̂•S ĴW1

1

kT
WĴVD . ~21!

As shown in Ref.@31#, both approaches are equivalent a
yield the same results. However, the Langevin equation
proach has, in our opinion, the advantage that it allows
to derive Eq.~15! in a much simpler manner.

For the purpose of illustration, we calculate here the n
linear response for rigid rodlike molecules in superimpos
external ac and strong dc bias electric fields. As far as sph
cal and symmetric top molecules with the dipole momenm
directed along the axis of symmetry are concerned, this p
lem has already been treated in many papers, see,
@15,16,19,28#. However, as mentioned in the Introductio
these results are not applicable to asymmetric top molec
@10#.

III. NONLINEAR RESPONSE IN SUPERIMPOSED ac
AND STRONG dc BIAS FIELDS:

PERTURBATION SOLUTION

In what follows, let us suppose, for simplicity, that th
diffusion tensorD̂ has only two distinct componentsDxx
5Dyy5D' andDzz5D i . This approximation is reasonab
for rodlike molecules, whereDxx'Dyy and D i and D' are
the rotational diffusion coefficients about the long and sh
axes of the molecule, accordingly. Furthermore, let us s
pose that the molecules are subjected to superimposed e
nal electric acE1(t) and strong dc biasE0 fields ~both di-
rected along theZ axis! and consider an ensemble of rig
nonpolarizablepolar molecules, where the dipole vectorm is
oriented at an angleQ to the direction of the long axis of th
molecule~see Fig. 1!. Here, the polarizability effects are ig
nored~equations, which take into account these effects,
given in Appendix B!. Without loss of generality, for a rod
like molecule, the molecular coordinate system can alw
be chosenso thatuy50, from whichux5sinQ,uz5cosQ in
Eq. ~19!. The potential energy of the molecule is then giv
by
02110
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kT
5 (

Q521

1

n1,0,QD0,Q
1 , ~22!

where

n1,0,052cosQ@j~ t !1j0#, n1,0,6156sinQ@j~ t !1j0#/&

and

j~ t !5mE~ t !/~kT! and j05mE0 /~kT!.

Now, tD5(2D')21, D5@(D i /D')21#/2, and J50 so
that Eq.~15! is considerably simplified to yield

tD

d

dt
^Dn,m

j &~ t !52@Dm21 j ~ j 11!/2#^Dn,m
j &~ t !

2
1

4
(

Q521

1

(
J5u j 21u

j 11

n1,0,QCj ,n,1,0
J,n Cj ,m,1,Q

J,m1Q

3@ j ~ j 11!122J~J11!24DmQ#

3^Dn,m1Q
J &~ t !,

which for n50 may be written as

tD

d

dt
^D0,m

j &~ t !1F j ~ j 11!

2
1m2DG^D0,m

j &~ t !

5
@j~ t !1j0#cosQ

2~2 j 11!
@~ j 11!Aj 22m2^D0,m

j 21&~ t !

2 jA~ j 11!22m2^D0,m
j 11&~ t !#1

@j~ t !1j0#sinQ

4~2 j 11!

3@~ j 12Dm!A~ j 1m11!~ j 1m12!^D0,m11
j 11 &~ t !

2~ j 22Dm!A~ j 2m11!~ j 2m12!^D0,m21
j 11 &~ t !

1~ j 1122Dm!A~ j 2m21!~ j 2m!^D0,m11
j 21 &~ t !

2~ j 1112Dm!A~ j 1m21!~ j 1m!^D0,m21
j 21 &~ t !#.

~23!

Insofar as values of the field parametersj0 andj are very
small ~!1! for the majority of polar molecules even at th
field strengths;107 V/m, one may apply perturbation theor
in order to calculate the nonlinear response. Here, we s
restrict ourselves to the ac response nonlinear in the dc
field j0 ~up to third order! and linear in the ac fieldj1eivt

~higher-order terms may be calculated in a similar man
@15#!. Now, one can obtain from Eq.~23! equations for
1-5
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^D0,0
1 & and^D0,21

1 &2^D0,1
1 &, which are necessary to evalua

the nonlinear response from Eq.~18!, viz.,

tD

d

dt
^D0,0

1 &~ t !1^D0,0
t &~ t !

5@j~ t !1j0#H cosQ

3
@12^D0,0

2 &~ t !#

2
sinQ

2A6
@^D0,21

2 &~ t !2^D0,1
2 &~ t !#J , ~24!

tD

d

dt
@^D0,21

1 &~ t !2^D0,1
1 &~ t !#

1~11D!@^D0,21
1 &~ t !2^D0,1

1 &~ t !#

5@j~ t !1j0#H&~11D!sinQ

3
1

~122D!sinQ

3&

3^D0,0
2 &~ t !2

cosQ

2)
@^D0,21

2 &~ t !2^D0,1
2 &~ t !#

2
~112D!sinQ

2)
@^D0,22

2 &~ t !1^D0,2
2 &~ t !#J ~25!

and one can seek a solution in the form

^D0,0
1 &~ t !'

cosQ

3
@s0~j0!1j1eivtx0~j0 ,v8!#, ~26!

^D0,21
1 &~ t !2^D0,1

1 &~ t !'
sinQ

3&
@2s0~j0!1j1eivtx1~j0 ,v8!#,

~27!

where s0(j0)5j0(12j0
2/15) and v85vtD . Further,

one can evaluatê D0,0
2 &(t), ^D0,21

2 &(t)2^D0,1
2 &(t), and

^D0,22
2 &(t)1^D0,2

2 &(t) from Eq. ~23! in the linear~in j1! ap-
proximation, viz.,
02110
^D0,22
2 ~ t !&~ t !1^D0,2

2 ~ t !&~ t !

'
j0 sin2 Q

5A6
H j01

j1eivt~314D!

~314D1 iv8!
@11 1

2 x1~j0 ,v8!#J ,

~28!

^D0,21
2 ~ t !&~ t !2^D0,1

2 ~ t !&~ t !

'
j0 sin 2Q

5A6
H j01

j1eivt~31D!

~31D1 iv8!

3F11
~614D!x0~j0 ,v8!13x1~j0 ,v8!

4~31D! G J ,

~29!

^D0,0
2 ~ t !&~ t !

'
j0~113 cos 2Q!

60 H j01
3j1eivt

~31 iv8!

3F11
4x0~j0 ,v8!cos2 Q2x1~j0 ,v8!sin2 Q

~113 cos 2Q! G J .

~30!

Having determinedx0 andx1 from Eqs.~24!–~30!, one can
calculate the electric polarization from Eq.~18! and, hence,
the complex nonlinear dielectric permittivity«nonlin(v,j0),
viz.,

«nonlin~v,j0!2«`}cos2 Qx0~j0 ,v8!1sin2 Qx1~j0 ,v8!/2

and the nonlinear dielectric incrementd«5d«81 id«9, i.e.,
the difference«nonlin(v,j0)2« lin(v) between the nonlinear
«nonlin(v,j0), and linear, « lin(v)5«nonlin(v,0), dielectric
permittivities. The incrementd« can be written as

d«5A~«s ,«`!F~v8,j0!, ~31!

where
F~v8,j0!52
j0

2

30H cos2 Q

11 iv8 F2

3
2

2~11D!1 iv8

~31 iv8!~11D1 iv8!
1

sin2 Q

31D1 iv8 S 31D1
2~11D!~31D!1~615D!iv8

2~11 iv8!~11D1 iv8! D
1

cos2 Q

31 iv8 S 31
3~11D!1~31D!iv8

~11 iv8!~11D1 iv8! D G1
sin2 Q

2~11D1 iv8! F ~122D!~61 iv8!

3~31 iv8!

1cos2 QS 3~11D!

~31D1 iv8!~11D1 iv8!
1

2~2D21!

~11 iv8!~31 iv8!
2

~122D!~61 iv8!

~31 iv8!
1

312D

~11 iv8!~31D1 iv8!

1
2~612D1 iv8!

~31D1 iv8! D1sin2 QS ~11D!~122D!

~11D1 iv8!~31 iv8!
1

~11D!~112D!~314D!

~11D1 iv8!~314D1 iv8!

1
~112D!~618D1 iv8!

~314D1 iv8! D G J ~32!
1-6
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and the functionA(«s ,«`) takes into account the interna
field effects; this function depends on the model of the lo
field used~appropriate equations forA(«s ,«`) are given,
e.g., in Ref.@10#; the internal field problem for nonlinea
dielectrics is discussed, e.g., in Refs.@38# and @39#!. For Q
50 ~symmetric top! or D50 ~isotropic diffusion!, Eq. ~32!
reduces to the corresponding result of Coffey and Paran
@28#:

F~v8,j0!→2j0
2 11~11 iv8!~21 iv8/3!

45~11 iv8!2~11 iv8/3!
. ~33!

The principal difference between Eqs.~32! and ~33! is that
Eq. ~32! takes into account the contribution of the rotati
about the long molecular axis tod«.

IV. RESULTS AND DISCUSSION

The real and imaginary parts ofF(vtD ,j0) @Eq. ~32!# as
functions of log10(vtD) and of the angleQ are illustrated by
surface plots in Figs. 2 and 3. In Figs. 4 and 5, the real

FIG. 2. Re@F# as a function of log10 (vtD) andQ for D55 and
j051.

FIG. 3. Im@F# as a function of log10(vtD) andQ for D55 and
j051.
02110
l

pe

d

imaginary parts ofF(vtD ,j0) as functions of log10(vtD)
and of D are shown. Apparently, the spectra ofF(vtD ,j0)
strongly depend on bothQ andD because in the anisotropi
diffusion (DÞ0) the rotation about the long molecular ax
contributes to the spectra atQÞ0°. Here, five modes with
characteristic timestD , tD/3, tD /(11D), tD /(31D), and
tD /(314D) take part in the nonlinear dielectric relaxatio
process@the modes characterized by the relaxation timestD ,
tD/3, and tD /(11D), tD /(31D), and tD /(314D) are
due to molecular rotation about the short and long molecu
axes, respectively#.

In order to test the theory, experiment
and theoretical dielectric incrementsd« of dilute solu-
tions of mesogenic 10-TPEB molecule
(C10H21uBuBuCH2uCH2uBuNvCvS, whereB
5C6H4! in benzene were compared. The spectra ofd« were
measured in superimposed strong dc (1.13107 V/m) and
small ~'100 V/m! ac electric fields in Ref.@10#. For the
10-TPEB molecule, the angleQ is markedly different from
zero, viz.,Q542°62° @10#. In the fitting, the experimenta
value of the relaxation timetD58.57310210s @10# has been
used so that the only adjustable parameter wasD. The least
mean-squares fitting procedure yieldsD'3.85. The compari-
son of the real and imaginary parts of the experimental
theoreticald« and of the nonlinear Cole-Cole plot for a dilut
solution of 10-TPEB molecules in benzene at 15 °C is sho
in Figs. 6 and 7, respectively. It appears that the theory c
rectly describes the shape of the observed spectra; here
modes with different characteristic frequencies~due to mo-
lecular rotation about the long and short molecular ax!
contribute to the spectra. Moreover, the calculation dem
strates that the theory also explains the temperature de
dence of the nonlinear dielectric decrementd«: it describes
the nonlinear spectra measured at 6 and 25 °C in Ref.@10#
for the same value ofD.

It is of interest to compare the value ofD so obtained with
that estimated in the hydrodynamic limit@12,32#. For long
rods~L@R, whereL andR are the half-length and radius o
a rod!, the hydrodynamic theory yields

FIG. 4. Re@F# as a function of log10(vtD) and D for Q5p/4
andj051.
1-7
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D5
x2

4 ln~2x!
2

1

2
. ~34!

Here x5L/R and equations forD i and D' from Ref. @40#
have been used in order to obtain Eq.~34!. The valueD
'3.85 corresponds to a shape parameterx'6.7 in Eq.~34!
and reasonably characterizes the geometrical structure o
10-TPEB molecule@10#.

In evaluating the nonlinear response in the context of
noninertial rotational diffusion model, we have ignored~i!
quantum effects,~ii ! dipole-dipole interactions, and~iii ! the
inertia of the molecules. The condition~i! means that the
results of our calculations for weak fields are applicable
the system, whereh i\/I i!1 @\ is the Planck constant an
h i5(I i /2kT)1/2 is a characteristic time of the thermal m
lecular rotation#. In a strong fieldE, where the characteristi
frequency of the system isvL5(mE/I i)

1/2, the quasiclassica

FIG. 5. Im@F# as a function of log10(vtD) and D for Q5p/4
andj051.

FIG. 6. Nonlinear dielectric spectrad«( f ) ( f 5v/2p)
of a dilute solution of 10-TPEB molecule
(C10H21uBuBuCH2uCH2uBuNvCvS, where B
5C6H6! in benzene at 15 °C. Solid and open circles are the exp
mental data from Ref.@10#; solid lines are the best fit from Eq.~32!
at D53.85 ~Q542° @10#!; dashed lines are Coffey-Paranjape, E
~33!.
02110
he
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condition can be written in the form\/(I ivL)!1. The above
inequalities break down in liquids and solutions only for t
lightest polar molecules such as HF and HCl, where quan
effects were indeed observed@41#. The assumption~ii ! re-
flects the fact that interparticle~dipole-dipole! correlations
are neglected in the Langevin Eq.~1!, which is only valid in
the zero order of the small parameterm2N0 /kT!1. The last
inequality is satisfied at room temperatures and for dip
moments;1 D up to a concentration of 1021cm23. One may
expect, however, that the qualitative behavior of the non
ear response will be similar at higher concentrations of
poles. The noninertial approximation@assumption~iii !#, i.e.,
I iv/§ i i !1, is fulfilled in the low-frequency region unde
consideration~,10 GHz! for the majority of molecules in
liquid solutions. The inclusion of the inertial effects caus
the theory to be much more complicated as one then need
solve the inertial Euler-Langevin equation~1! ~the
differential-recurrence equations will involve six indices
that case!. However, in the low field strength limit, the ap
propriate linear dielectric relaxation theory for asymmet
top molecules has already been developed~see, e.g.,@14,42–
47#! so that the task of developing the correspond
nonlinear-response theory remains.

To conclude, in the present paper, the moment sys
@Eq. ~15!# governing the kinetics of the polarization of a
assembly of asymmetric top molecules in high electric fie
has been derived. Equation~15! is a general result which
may be used to evaluate various types of nonlinear respo
~such as transient, ac stationary responses, etc.! for arbitrary
polar and polarizable asymmetric top molecules in stro
external fields. The advantage of the approach we have
veloped is that it does not use the assumption of low fi
strengths. On solving this system for rodlike polar nonpol
izable molecules, when the dipole vector of the moleculem
is directed at an arbitrary angleQ to the long molecular axis
an analytical equation for the nonlinear response in supe
posed ac and strong dc bias fields has been derived~which is
of importance from an experimental point of view@7–10#!.
For symmetric top molecules, whenm is directed along the
axis of symmetry of the molecule, the result for the nonline

i-

.

FIG. 7. Nonlinear Cole-Cole plot for a dilute solution of 10
TPEB molecules in benzene at 15 °C. Solid circles are the exp
mental data from Ref.@10#; solid line is Eq.~32!.
1-8
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dielectric increment@Eq. ~32!# reduces to that of Coffey an
Paranjape@28#. It was shown that the results obtained are
agreement with experimental data. Our approach can als
used for the evaluation of the dynamic Kerr effect, where
quantities of interest arêD0,m

2 &(t) @15,24–26#. Moreover, it
can be applied~with small modifications! to the calculation
of the nonlinear magneticresponse of liquid magnetic sys
tems such as magnetotactic bacteria in aqueous solutions
ferrofluids~colloidal suspensions of fine magnetic particle!,
where the dynamics are governed by equations very sim
to Eq.~1! @17,48–50#. Thus the approach we have develop
provides a useful basis for future studies of the nonlin
response of various physical systems of Brownian asymm
ric top particles. Further applications of it will be give
elsewhere.
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APPENDIX A: EVALUATION OF THE LINEAR
RESPONSE FROM EQ. „15…

Here, we demonstrate how the linear-response theory
sults for noninteracting asymmetric top molecules c
readily be obtained from Eq.~15!. Let us suppose that a
external spatially uniform small dc electric fieldE (j
5mE/kT!1) was applied to the system of asymmetric t
molecules att52` in the direction of theZ axis of the
laboratory coordinate system and at timet50 the field has
been switched off. We are interested in the decay of
polarizationPZ(t) of the system of the molecules starting
t50 from the equilibrium state I with the Bolzmann distr
bution functionWI(V)5C21 exp@mZ(V)E/(kT)# @whereC is
a normalizing constant andmZ is given by Eq.~19!# to the
equilibrium state II with the uniform distribution functio
WII(V)51/8p2, which is reached att→`.

The relaxation ofPZ(t) given by Eqs.~18! and ~19! is
completely determined by^D0,0

1 &(t), ^D0,21
1 &(t), and

^D0,1
1 &(t). Equations of motion for these functions att>0

can be obtained from Eq.~15! at j 51, n50, and m50,
61. One has

tD

d

dt
^D0,0

1 &~ t !1^D0,0
1 &~ t !50, ~A1!

tD

d

dt
^D0,61

1 &~ t !1~11D!^D0,61
1 &~ t !52~J/2!^D0,71

1 &~ t !.

~A2!

The solutions of Eqs.~A1! and ~A2! are

^D0,0
1 &~ t !5^D0,0

1 &~0!e2~Dxx1Dyy!t, ~A3!
02110
be
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r
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I

e-
n

e

^D0,21
1 &~ t !2^D0,1

1 &~ t !5@^D0,21
1 &~0!2^D0,1

1 &~0!#

3e2~Dzz1Dyy!t, ~A4!

^D0,21
1 &~ t !1^D0,1

1 &~ t !5@^D0,21
1 &~0!1^D0,1

1 &~0!#

3e2~Dzz1Dxx!t, ~A5!

where the relations

tD
215Dxx1Dyy , tD

21~11D2J/2!5Dzz1Dyy ,

tD
21~11D1J/2!5Dzz1Dxx ~A6!

have been taken into account. The initial values^D0,p
1 &(0) in

Eqs.~A3!–~A5! are determined from the following equation

^D0,p
1 &~0!5E D0,p

1 ~V!W1~V!dV

in the low field strength limit@mE/(kT)!1# so that

^D0,0
1 &~0!5juz/31o~j!,

^D0,61
1 &~0!57j~ux6 iuy!/~3& !1o~j!. ~A7!

Here, the known properties ofD functions@23#, viz.,

E Dn,m
j* ~V!Dn8,m8

j 8 ~V!dV5
8p2

2 j 11
d j , j 8dn,n8dm,m8 ,

Dn,m
j* ~V!5~21!n2mD2n,2m

j ~V!

~dV5sinb db da dg and the asterisk denotes the compl
conjugate!, have been used. Now one has from Eqs.~16! and
~A3!–~A7!

PZ~ t !5E
m2N0

3kT
$uz

2e2~Dxx1Dyy!t1uy
2e2~Dxx1Dzz!t

1ux
2e2~Dzz1Dyy!t%, ~A8!

which is the result of Perrin@12#. Having determined the
PZ(t), one can also evaluate other dielectric parameters s
as the complex dielectric susceptibility and permittivity. W
remark that the quantum theory of a rigid asymmetric ro
~which was the basis of the previous theoretical appro
@13,24–26#! has not been used to derive Eq.~A8!.

APPENDIX B: MOMENT SYSTEM FOR RODLIKE
POLARIZABLE MOLECULES

In order to take into account polarizability effects, it
sufficient to derive moment equations fornonpolar polariz-
able molecules only as the contribution of the polarizabili
term in Eq.~2! is additive. The potential energyV of a non-
polar polarizable molecule in the external electric fieldE
applied in the direction of theZ axis of the laboratory coor-
dinate system is given by@24#

V

kT
5 (

Q522

2

n2,0,QD0,Q
2 , ~B1!

where
1-9
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n2,0,Q52
E2

3kT
~21!Qa~2Q! ~B2!

and

a6~2!5~3/8!1/2~axx2ayy62iaxy!,

a6~1!57~3/2!1/2~axz6 iayz!, a~0!5~3azz2Tr â !/2

are the irreducible spherical tensor components of the sec
rank, which consist of the componentsamn of the electrical
polarizability tensorâ. Thus Eqs.~15!, ~B1!, and~B2! yield
the 25-term recurrence equation, viz.,

tD

d

dt
^Dn,m

j &~ t !

52S j ~ j 11!

2
1Dm2D ^Dn,m

j &~ t !

2
1

4 (
Q522

2

(
J5u j 22u

j 12

n2,0,Q@ j ~ j 11!162J~J11!

24mQD#Cj ,n,2,0
J,n Cj ,m,2,Q

J,m1Q^Dn,m1Q
J &~ t !. ~B3!

For n50, Eq. ~B3! can be presented as the 15-term rec
rence equation:

tD

d

dt
^D0,m

j &~ t !5 (
q,L522

2

ej ,m
L,q^D0,m1q

j 1L &~ t !, ~B4!

where

ej ,m
0,0 52

j ~ j 11!

2
2m2D

1
E2~2azz2axx2ayy!

4kT

@ j ~ j 11!23m2#

~2 j 21!~2 j 13!
,

ej ,m
0,6157

E2~axz7 iayz!~162m!~372Dm!

4kT~2 j 21!~2 j 13!

3A~ j 116m!~ j 7m!,
pl

ev

d

02110
nd

-

ej ,m
0,6252

E2~axx2ayy72iaxy!~374mD!

8kT~2 j 21!~2 j 13!

3A@ j 22~m61!2#@~ j 11!22~m61!2#,

ej ,m
62,057

E2~2azz2axx2ayy!

8kT

3
~2 j 1171!A@~ j 61!22m2#@~ j 1161!22m2#

~2 j 61!~2 j 1261!
,

ej ,m
2,6156

E2~axz7 iayz!~ j 6mD!

2kT~2 j 11!~2 j 13!

3A@~ j 11!22m2#~ j 126m!~ j 136m!,

ej ,m
22,6156

E2~axz7 iayz!~ j 117mD!

2kT~2 j 11!~2 j 21!

3A~ j 22m2!~ j 227m!~ j 217m!,

ej ,m
22,625

E2~axx2ayy72iaxy!~ j 1172mD!

8kT~2 j 21!~2 j 11!

3A@~ j 217m!221#@~ j 227m!221#,

ej ,m
2,6252

E2~axx2ayy72iaxy!~ j 62mD!

8kT~2 j 13!~2 j 11!

3A@~ j 126m!221#@~ j 136m!221#,

ej ,n,m
1,61 5ej ,n,m

21,615ej ,m
1,625ej ,m

21,625ej ,m
61,050.

Equation~B4! is similar to that solved exactly in Ref.@20# in
terms of matrix continued fractions, therefore the approa
developed in@20# may also be applied with small modifica
tions to the solution of Eq.~B4!.
.
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@16# J. L. Déjardin, Yu. P. Kalmykov, and P. M. De´jardin, Adv.
Chem. Phys.117, 275 ~2001!.

@17# W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron,The Lange-
vin Equation~World Scientific, Singapore, 1996!.

@18# H. Watanabe and A. Morita, Adv. Chem. Phys.56, 255~1984!.
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